2017년 9월 27일 수요일

CAN Messages, Part I

참조: Link

The CAN bus is a broadcast type of bus. This means that all nodes can “hear” all transmissions. There is no way to send a message to just a specific node; all nodes will invariably pick up all traffic. The CAN hardware, however, provides local filtering so that each node may react only on the interesting messages.
CAN bus는 broadcast 타입의 bus 입니다. 이 말은 모든 node들은 모든 통신내용을 들을 수 있다는 걸 의미합니다. 특정 node만이 들을 수 있도록 message를 보내는 것은 가능하지 않습니다.

The CAN messages

CAN uses short messages – the maximum utility load is 94 bits. There is no explicit address in the messages; instead, the messages can be said to be contents-addressed, that is, their contents implicitly determines their address.
CAN은 짧은 message를 사용합니다. – 가능한 최대 길이는 94bit(11byte + 6bit) 입니다. message에는 특정 주소가 있는 것은 아니지만; 대신, message는 내용에 주소가 있다고 이야기 할 수 있습니다. 그 이야기는 내용 자체에 암암리에 주소가 있기 때문 입니다.

Message Types

There are four different message types (or “frames”) on a CAN bus:
CAN bus에는 message의 타입(혹은 frame이라고 불림)이 4가지 있습니다.
  1. the Data Frame,
  2. the Remote Frame,
  3. the Error Frame, and
  4. the Overload Frame.

1. The Data Frame

Summary: “Hello everyone, here’s some data labeled X, hope you like it!”
요약: "안녕 모두들, 여기 라벨이 X라고 붙은 data가 있어, 좋아했으면 해!"
The Data Frame is the most common message type. It comprises the following major parts (a few details are omitted for the sake of brevity):
Data frame은 가장 일반적인 message 타입입니다. 몇가지 중요한 부분으로 구성되어 있습니다.(몇몇 세부내용은 간결함을 위하여 생략되었습니다.)
  • the Arbitration Field, which determines the priority of the message when two or more nodes are contending for the bus. The Arbitration Field contains:
  • Arbitration Field 라고 하는 부분은 message 간의 우선순위를 결정해 줍니다. bus에 있는 내용들이 2개 이상일 때 구별해 줍니다. Arbitration Field 는 아래 내용을 포함합니다:
    • For CAN 2.0A, an 11-bit Identifier and one bit, the RTR bit, which is dominant for data frames.
    • CAN 2.0A 에서는 11bit의 구별자와 1bit, RTR bit로서 data frame에서 dominant(0)인,
    • For CAN 2.0B, a 29-bit Identifier (which also contains two recessive bits: SRR and IDE) and the RTR bit.
    • CAN 2.0B 에서는 29bit의 구별자(두 개의 recessive bit(1)를 가진, SRR, IDE))와 RTR bit
  • the Data Field, which contains zero to eight bytes of data.
  • Data Field 는 0~8byte 의 길이를 가진다. 
  • the CRC Field, which contains a 15-bit checksum calculated on most parts of the message. This checksum is used for error detection.
  • CRC field 는 15bit로 계산 된 checksum 값을 error detection 을 위해서 사용한다. 
  • an Acknowledgement Slot; any CAN controller that has been able to correctly receive the message sends an Acknowledgement bit at the end of each message. The transmitter checks for the presence of the Acknowledge bit and retransmits the message if no acknowledge was detected.
  • Acknowledgement Slot는 각 message의 마지막에 붙은 bit로서 transmitter가 마지막에 보냈는지 체크해서 보내지 않았으면 다시 보낸다.? 방향이 헷갈림
Note 1: It is worth noting that the presence of an Acknowledgement Bit on the bus does not mean that any of the intended addressees has received the message. The only thing we know is that one or more nodes on the bus has received it correctly.
Note 1: Acknowledgement bit는 내가 원했던 node에서 message를 받았다는 것을 나타내지는 않는다 하지만 누군가는 받았다는것을 확인할 수 있으므로 있는것이 좋다.
Note 2: The Identifier in the Arbitration Field is not, despite of its name, necessarily identifying the contents of the message.
Note 2: Identifier의 Arbitration Field(중재 필드)는 그 이름에도 불구하고 충분히 message를 구분하지 못한다.
 A CAN 2.0A (“standard CAN”) Data Frame.
 A CAN 2.0B (“extended CAN”) Data Frame.





RTR: Remote transmission request
SRR: Substitute remote request
IDE: Identifier extension bit

Introduction: The CAN bus

Introduction: The CAN bus

The CAN bus is a broadcast type of bus. This means that all nodes can “hear” all transmissions. There is no way to send a message to just a specific node; all nodes will invariably pick up all traffic. The CAN hardware, however, provides local filtering so that each node may react only on the interesting messages.
CAN 버스는 broadcast 타입의 bus 입니다. 이 말은 모든 node들은 모든 통신 내용을 "들을" 수 있다는 이야기 입니다. 단지 하나의 node에만 message를 보내는 방법은 없습니다; 모든 node들은 언제나 모든 통신내용을 듣습니다. 하지만 CAN 하드웨어는 내부에서 filtering을 제공하며, 각 node에서는 관련이 있는 message 에만 반응합니다.

The bus uses Non-Return To Zero (NRZ) with bit-stuffing. The modules are connected to the bus in a wired-and fashion: if just one node is driving the bus to a logical 0, then the whole bus is in that state regardless of the number of nodes transmitting a logical 1.
bus는 NRZ 과 bit-stuffing을 사용한다. 이 말은 항상 의미가 있는 bit들의 조합을 사용하며 에러를 감지하기 위하여 특정 위치에(규칙으로) bit를 삽입한다는 의미이다. module들은 bus에 wired-AND 방식으로 연결되어 있다. 만약 하나의 node가 bus를 0상태로 변경하려고 하면, 모든 bus가 그 상태(0)이 된다 몇개의 node들이 1을 만들어내는것에 상관 없이. 

The CAN standard defines four different message types. The messages uses a clever scheme of bit-wise arbitration to control access to the bus, and each message is tagged with a priority.
CAN의 표준에서는 4가지 다른 message의 타입을 정의합니다. 이 message들은 영리한 방법으로 bit-wise arbitration 을 사용하여 bus로의 접근을 제어 하며, 각 message들은 우선순위가 있습니다.

The CAN standard also defines an elaborate scheme for error handling and confinement which is described in more detail in Section 9, “CAN Error Handling” (Pg 23).
또한 CAN표준은 오류처리 와 제한을 위한 정교한 계획을 정의합니다. 자세한 내용은 9장 "CAN 오류 처리"에서 확인할 수 있습니다.

Bit timing and clock synchronization is discussed in Page 8 of this Tutorial. Here’s a bit timing calculator you can use to calculate the CAN bus parameters and register settings.
비트 타이밍 및 클럭 동기화는이 자습서 8 페이지에서 설명합니다. 다음은 CAN 버스 매개 변수와 레지스터 설정을 계산하는 데 사용할 수있는 약간의 타이밍 계산기입니다.

CAN may be implemented using different physical layers (Pg 5), some of which are described here, and there are also a fair number of connector types (Pg 7) in use. We also provide a number of oscilloscope pictures (Pg 6) for those interested in the details of a message.
CAN은 서로 다른 물리 계층 (Pg 5)을 사용하여 구현 될 수 있으며, 그 중 일부는 여기에 설명되어 있으며 사용중인 커넥터 유형 (Pg 7)의 수가 상당히 있습니다. 또한 메시지의 세부 사항에 관심이있는 사람들을 위해 여러 오실로스코프 사진 (페이지 6)을 제공합니다.



Non-Return To Zero (NRZ) (Link)
기록 · 재생에 있어서의 하나의 모드로, 기록된 데이터의 각 아이템 다음에 신호가 반드시 제로로 복귀하지 않는 것. 따라서 중성(휴지:休止) 위치는 없다. 디짓 1은 하나의 진폭 레벨이고, 또 디짓 0은 다른 진폭 레벨(극성은 동극성일 때도 역극성일 때도 있다)로 표현된다. 제로 복귀 모드에 비해 기록 속도를 빨리 할 수 있다.
[네이버 지식백과] 비 복귀 기록 [non-return to zero, 非復歸記錄] (전자용어사전, 1995. 3. 1., 성안당)
bit-stuffing(Link)
전송된 데이터열에 여분의 비트를 삽입하는 것. 비트 스터핑은 특수한 비트열이 확실히 원하는 위치에만 나타나도록 하기 위해 사용한다.
wired-AND(Link)
bit-wise arbitration
confinement
bus(Link)
In computer architecture, a bus[1] (a contraction of the Latin omnibus) is a communication system that transfers data between components inside a computer, or between computers. This expression covers all related hardware components (wire, optical fiber, etc.) and software, including communication protocols

2017년 9월 26일 화요일

Serial 통신 비교(UART vs SPI vs I2C)

참조 Link

Serial 통신 이해를 위해 Internet 상의 좋은 자료를 찾았고, 이해를 위해 번역 및 내용 추가 하였습니다.

---

이 페이지에서는 UART, SPI, I2C 를 테이블 형식으로 비교 합니다.
여러 항목들을 비교할 예정 입니다.


항목
UART
SPI
I2C
전체 이름
Universal Asyncronous Receiver/Transmitter
Serial Peripheral Interface
Inter-Integrated Circuit
Interface Diagram


TxD: Transmit Data
RxD: Receive Data
SCLK: Serial Clock
MOSI: Master Output, Slave Input
MISO: Master Input, Slave Output
SS: Slave Select
SDA: Serial Data
SCL: Serial Clock
Data Rate
데이터 전송 속도
비동기(asynchronous) 통신이기 때문에 공유하는 Clock 없어서 통신하는 양쪽 기기의 속도를 동일하게 맞춰 주어야 한다. 동일하지 않아도 통신이 되는 경우가 있지만 의도하지 않은 데이터가 들어갈 경우가 있다
Maximum 통신 속도는 Model 에 따라 다르며, 일반적으로 115,200bps 이다.
SPI에서 최대 데이터 속도는 정해져 있지 않다. 보통 10Mbps 에서 20Mbps 사이 이다.
I2C 100Kbps, 400Kbps, 3.4Mbps 주로 사용하며 10Kbps 1Mbps 사용하는 경우도 있다.
Distance 거리
5미터 이하
가장 길다.
길다.
Type of communication
통신의 종류
비동기
통신을 하는 기기가 같은 clock 공유하지 않는다는 의미로, 통신하는 기기가 동일한 속도를 맞춰야 한다. 편리한 점은 속도만 맞추면 어떤 기기와도 통신이 가능하다는
동기
같은 clock 사용하여 통신을 한다는 의미로, 개발 단계에서 연결이 되어야 한다.
동기
Number of masters
Master 없다. 각자 주고(Tx), 받는(Rx) .
Master 하나이며 변하지 않는다.
Master 하나 이상이 있다.
Clock
공유하는 Clock 없다. 기기는 각자의 Clock 사용하며 통신 시에는 동일한 데이터 전송 속도를 설정하여 송수신 해야 한다.
Master Slave들은 동일한 Clock 사용한다.
Master들과 Slave들은 동일한 클럭을 사용한다.
Hardware Complexity
가장 복잡하지 않다.
복잡하지 않다.
복잡하다.
Protocol
Data 8bit 보내며 앞에 Start bit 뒤에 Stop bit 붙인다.
통일된 Protocol 있지 않다. 그래서 해당 기기의 datasheet 참조해야 한다. 예를 들어 microcontroller EEPROM 통신을 한다면 EEPROM datasheet 봐야 한다.
Start bit Stop bit 사용하며 데이터는 8bit 전송한다. 8bit 보내고 나면 (slave?) ack 사용하여 데이터가 받아졌는지를 확인한다. 아래 그림에 표시 되어있다.

Software addressing
1:1 통신만을 하기 때문에 addressing 필요 없다.
Master에는 slave 개수만큼 slave select 라인이 있기 때문에 해당 line 통해서 slave 선택한다.
다수의 master 다수의 slave 존재하고, master 모든 slave 접근할 있다. 27개의 slave까지 지원이 되며 master 고유 주소값을 통해 접근한다.
장점
하드웨어가 간단해서 거의 모든 장치에서 UART 지원하기 때문에 (9개의 핀이 연결되거나, USB 있는 장치라면) 편리하다. RS232 라고도 불린다. RS232 protocol 이름이며 UART 그것을 가능하게 주는 송수신기를 의미하기 때문이다.
간단한 프로토콜이기 때문에 구현하는데 어렵지 않다. Full duplex(전체 동시 송수신, 전이중) 통신을 지원한다.
나뉘어진 slave select 라인이 있기 때문에 같은 종류의 칩들이 회로에 사용될 있다.
SPI push-pull 사용하기 때문에 높은 데이터 전송률을 가지며 거리도 가능하다.
SPI I2C 비교하면 적은 파워를 사용한다.
Open collector(?) 디자인이기 때문에 slew rate(출력 전압의 최대 변화율, 모양이 이상해 지는 ) 제한적이다.
이상의 master 가능하다.
선이 필요하다.
Addressing 하는 방법이 간단해서 SPI 같이 여러 라인이 필요하지 않다.
Open collector bus concept 가지고 있어 bus voltage 유연(다른  voltage level 가능)하다.
Flow control 사용한다. (ack 말하는 )
Mixed speed 가 가능하다(Link)
단점
1:1 통신만 지원한다.
동일한 속도를 맞추고 시작해야 한다. 그렇지 않으면 데이터가 깨질 것이다.
Voltage level 이 동일해야 한다.
Slave 많아지면 slave 라인이 필요하기 때문에 hardware 구성이 복잡해진다.
만약 slave 추가 된다면 선을 새로 연결해야 하며 addressing 위해 software 디자인이 변경되어야 한다.
Master slave 고정되어 있기 때문에 I2C에서 하는 것처럼 역할 변경을 없다.
Flow control 없다.
Voltage level 이 동일해야 한다.
Master slave 많아지면 복잡성이 증가한다.
I2C half duplex(반이중) 이다. 말은 하나의 SDA 통해서 Data 방향으로 있지만 한번에는 하나의 데이터만 간다는 뜻이다. UART 항상 방향으로만 가는데 반해 이중은 동시는 아니지만 방향이 가능하다.
참조
RS232 Interface>>
UART는 회로를 의미하는 단어로, 일반적으로 EIA RS-232, RS-422, RS-485와 같은 통신 표준과 함께 사용한다.


I2C
  • I2C 의 Slave 주소는 해당 Chip의 Datasheet에 Idx의 구성에 따라 여러가지로 될 수 있다는 것이 명시되어 있다. 여러 Chip이 같은 Bus를 통해서 연결될 수 있기 때문이다. 그래서 실제 IDx 의 회로 구성을 확인하여 주소값을 확인해야 한다.
  • Slave I2C의 속도는 해당 Chip의 Register Setting 에 의해 변경될 수 있다. Clock 과 Data의 최대 속도를 확인하고 그 이상으로 셋팅하지 않아야 한다.
  • I2C 에서 1Byte 단위로 데이터를 송신하기 때문에 9번째 bit를 보면 ACK 여부를 확인할 수 있다. Start와 Stop 신호를 제외하면 모두 이 1byte(8bit) 단위로 송신이 되며 보통 Slave Address(1byte), Register Address(1~2 Byte), Value(1Byte) 로 한 셋트를 송신하지만 인접한 Address 의 경우에는 연속으로 쓸 수 있다. 이를 Burst Write 혹은 Sequential Write 라고 부른다.
  • I2C 를 여러 Chip 끼리 연결하려고 하면(같은 Bus) 신호의 Level 을 맞춰 주어야 한다. 보통 1.8V, 3.3V, 5V 등 이 있으며 이를 맞춰주기 위해서는 Level Shifter 가 회로에 구성되어 있어야 하면 그렇지 않으면 통신이 정상적으로 이루어 지지 않는다.
  • I2C 를 이해할 때는 몇 V 로 동작하는지, Start Condition은 SDA 가 default 1인 상태에서 0으로 갈 때 신호가 시작되고, SDA, SCL 모두 default 1인 상태에서 0으로 갈 때가 동작을 진행한 상태이므로 우선순위가 높다 그래서 ACK 신호가 low(SCL high, SDA low) 인 것이다. Start 와 Stop(SDA가 0으로 먼저 떨어지고 SCL high 가 된 상태) 를 제외하면 총 9bit를 사용하는데 8bit 가 하나의 1byte 이므로 이를 보내기 위해서 사용되며 나머지 1bit 가 반대쪽의(write 시 slave 에서 잘 받았다고 보내는 신호) ACK 이다. Mater에서 read 시에는 데이터를 slave 쪽에서 보내는 데 이 때 데이터를 전부 보내고 나면 NACK 를 보내 더이상 보낼 데이터가 없다는 것을 알려준다.
I2C ACK(Link)




2017년 9월 25일 월요일

Serial 통신

Serial 통신의 가장 대표적인 I2C, SPI, Uart 정리


회로의 복잡성
I2C > Uart > SPI

선의 수
SPI > I2C = Uart

Sync(동기) 맞춤
동기: SPI, I2C -> 공동 Clock 사용
비동기: Uart -> 매 데이터 송수신 시 Start, Stop bit 사용





유용한 링크
I2C
    - http://www.jamesgibbard.co.uk/electronics/beginnersguidetoi2c
    - http://www.hardcopyworld.com/ngine/aduino/index.php/archives/2790
    - https://electricimp.com/docs/resources/i2c/
Uart
    - 




Signal 의 모습