2017년 4월 23일 일요일

Image Sensor

Image Processing 을 이해하기 위한 Image Sensor 종류 확인

보통 CMOS 센서를 쓰고, 빛의 양(회색 빛)을 숫자로 받을 수 있으며 색을 확인하기 위하여 Bayer filter 를 사용하여 interpolation 을 하면 digitize(숫자화, 여기서는 양자화 까지 포함?) 된, matrix 형태의 이미지를 받을 수있다.
궁금한 것은 sensor 의 셋팅을 통하여 센서에서 받는 이미지의 값이 달라지고 이것이 최종 이미지 품질을 변화시킬 텐데
sensor 셋팅을 통해서 할 수있는 일들이 무엇인지 궁금하다. 왜냐하면 이미지 프로세싱과 구분이 잘 안되기 때문이다.


아래 내용 참조: https://en.wikipedia.org/wiki/Image_sensor

An image sensor or imaging sensor is a sensor that detects and conveys the information that constitutes an image. It does so by converting the variable attenuation of light waves (as they pass through or reflect off objects) into signals, small bursts of current that convey the information. The waves can be light or other electromagnetic radiation. Image sensors are used in electronic imaging devices of both analog and digital types, which include digital cameras, camera modules, medical imaging equipment, night vision equipment such as thermal imaging devices, radar, sonar, and others. As technology changes, digital imaging tends to replace analog imaging.
이미지 센서 혹은 이미징 센서는 이미지 정보를 감지하고 전달한다. 빛 파장의 가변감쇄를 통하여(통과 시키거나 반사하면서) 시그널이나, 적은 저항으로 이미지 정보를 저장한다. 그 파자은 빛이나 다른 전자기복사가 될 수 있다. 이미지 센서는 전자 이미지 장치(아날로그, 디지털 타입 모두)에 사용된다. 디지털 카메라, 카메라 모듈, 의료 이미징 장비, 야간 투시경 장비(열 감지 장치, 레이다, 음향포정장치 등)에 사용된다. 기술이 변화하면서 디지털 이미징은 아날로그 이미징으로 옮겨가고 있다.

Early analog sensors for visible light were video camera tubes. Currently, used types are semiconductor charge-coupled devices (CCD) or active pixel sensors in complementary metal–oxide–semiconductor (CMOS) or N-type metal-oxide-semiconductor (NMOS, Live MOS) technologies. Analog sensors for invisible radiation tend to involve vacuum tubes of various kinds. Digital sensors include flat panel detectors.
초기 사람에게 보이는 영역(가시광)을 위한 아날로그 센서는 비디오 카메라 튜브 였습니다. 현재 사용되는 센서의 타입은 반도체 CCD(charge-coupled devices)나 active Pixel sensor인 CMOS(complementary metal–oxide–semiconductor) 혹은 NMOS(N-type metal-oxide-semiconductor) 기술 입니다. 보이지 않는 영역을 위한 아날로그 센서는 다양한 vaccum tube를 포함하고 있습니다. 디지털 센서는 평평한 판넬 감지기를 포함합니다.


CCD vs CMOS technology
Today, most digital cameras use a CMOS sensor, because CMOS sensors perform better than CCDs. An example is the fact that they incorporate an integrated circuit, helping reduce costs. CCD is still in use for cheap low entry cameras, but weak in burst mode.[1] Both types of sensor accomplish the same task of capturing light and converting it into electrical signals.
오늘, 대부분의 디지털 카메라는 CMOS 센서를 사용한다. 왜냐하면 CMOS 센서는 CCD 보다 나은 성능을 내기 때문이다(-.-;). 예를 들면 CMOS는 가격을 줄이는 데 도움이 되는 집적회로를 포함하고 있다. CCD는 보통 싼 기본기능이 탑재된 카메라에 쓰인다. 하지만 독점 방식에 약하다. 두개의 (센서)타입 모두 빛을 캡쳐해서 전자 시그널로 변환하는 기능을 수행한다.

Each cell of a CCD image sensor is an analog device. When light strikes the chip it is held as a small electrical charge in each photo sensor. The charges in the line of pixels nearest to the (one or more) output amplifiers are amplified and output, then each line of pixels shifts its charges one line closer to the amplifier(s), filling the empty line closest to the amplifiers(s). This process is then repeated until all the lines of pixels have had their charge amplified and output.[2]
CCD 이미지 센서의 각 셀은 아날로그 장치이다. 빛이 센서의 개별 칩(픽셀)에 부딧힐 때 작은 전하가 생긴다. 아웃풋 증폭기와 가까운 row 픽셀 라인의 전하들은 증폭되고 아웃풋 된다(?) 그리고 각 픽셀 라인은 그 전하를 가장 가까운 빈 라인을 채우면서 한 라인 가까운 증폭기에 시프트 시킨다. 이프로세스는 모든 픽셀 라인이 전하로 채워질 때까지 계속된다.

A CMOS image sensor has an amplifier for each pixel compared to the few amplifiers of a CCD. This results in less area for the capture of photons than a CCD, but this problem has been overcome by using microlenses in front of each photodiode, which focus light into the photodiode that would have otherwise hit the amplifier and not be detected.[3] Some CMOS imaging sensors also use Back-side illumination to increase the number of photons that hit the photodiode.
CMOS 이미지 센서는 각 픽셀에 증폭기가 달려있어 상대적으로 적은 CCD 와 비교된다. 이 차이가 적은 포톤을 잡는 특징을 만들었지만, 이 문제는 각 포토다이오드 앞에 빛을 포토다이오드에 포커스 하게 해주는 마이크로렌즈를 사용함으로써 빛이 증폭기를 비춰서 디텍트 되지 않을수 있는 위험을 없애 주었다. 일부 CMOS 이미지 센서는 뒷면 조명을 사용하여 포토 다이오드를 치는 포톤의 수를 증가시켜 주었다.(?)

CMOS sensors can potentially be implemented with fewer components, use less power, and/or provide faster readout than CCD sensors.[4] They are also less vulnerable to static electricity discharges.
CMOS 센서는 CCD보다 잠재적으로 적은 수, 적은 파워 그리고 빠른 해독이 가능하다. 그리고 정전기에도 덜 연약하다.

Another hybrid CCD/CMOS architecture, sold under the name "sCMOS," consists of CMOS readout integrated circuits (ROICs) that are bump bonded to a CCD imaging substrate – a technology that was developed for infrared staring arrays and now adapted to silicon-based detector technology.[5] Another approach is to utilize the very fine dimensions available in modern CMOS technology to implement a CCD like structure entirely in CMOS technology. This can be achieved by separating individual poly-silicon gates by a very small gap. These hybrid sensors are still in the research phase and can potentially harness the benefits of both CCD and CMOS imagers.[6]
또 다른 CCD/CMOS 를 조합한 구조는, 'sCMOS' 라고 하며, CMOS 해독 집적회로(ROICs) 가 CCD 이미지 기판에 붙어 있다 - 이 기술은 적외선 응시 배열 때문에 만들어 졌으며 지금은 실리콘 기반의 탐지 기술에도 적용 되고 있다.  ...

Performance
There are many parameters that can be used to evaluate the performance of an image sensor, including dynamic range, signal-to-noise ratio, and low-light sensitivity. For sensors of comparable types, the signal-to-noise ratio and dynamic range improve as the size increases.


Color separation
There are several main types of color image sensors, differing by the type of color-separation mechanism:
color 를 sensing 하기 위하면 몇가지 다른 방법이 있다.

1) Bayer filter sensor,
low-cost and most common, using a color filter array that passes red, green, or blue light to selected pixel sensors, forming interlaced grids sensitive to red, green, and blue – the missing color samples are interpolated using a demosaicing algorithm. In order to avoid interpolated color information, techniques like color co-site sampling use a piezo mechanism to shift the color sensor in pixel steps. The Bayer filter sensors also include back-illuminated sensors, where the light enters the sensitive silicon from the opposite side of where the transistors and metal wires are, such that the metal connections on the devices side are not an obstacle for the light, and the efficiency is higher.[7][8]

2) Foveon X3 sensor,
using an array of layered pixel sensors, separating light via the inherent wavelength-dependent absorption property of silicon, such that every location senses all three color channels.

3) 3CCD,
using three discrete image sensors, with the color separation done by a dichroic prism.






















댓글 없음:

댓글 쓰기